
A VOICE-CONTROLLED AUTOMATIC TELEPHONE
SWITCHBOARD AND DIRECTORY INFORMATION SYSTEM

A. Kellner, B. Rueber, and F. Seide
{kellner, rueber, seide}@pfa.research.philips.com

Philips GmbH Forschungslaboratorien
P.O. Box 1980, D-52021 Aachen, Germany

ABSTRACT

In this paper, we present the Philips automatic telephone
switchboard and directory information system PADIS1.
PADIS understands natural-language requests in fluently
spoken German. The system offers telephone, fax, and room
numbers, email addresses, private phone numbers, and di-
rect call completion. A setup with a 500-entry database is
currently in a field test in our research laboratory and has
shown a success rate of 90%. This paper describes the system
architecture and its components, and presents experiences as
well as results from the field test.

1. INTRODUCTION

The use of automatic speech recognition for telephone
switchboard systems offers a large potential for automation
and increased functionality. For such an automatic system
to be accepted by the user, it is crucial that everybody can
use it without any prior instructions. Thus, the user must
be able to talk to the system in a natural way, very much
like he or she would speak to a human operator.

We have developed a speaker-independent continuous-speech
prototype of an automatic telephone switchboard system to
be used over the telephone. For about 500 employees and
structural units of our lab, it offers telephone numbers, fax
and room numbers, email addresses, and – if explicitly agreed
by the subscriber – private phone numbers. In addition, it
provides direct call completion to the desired party. The
prototype has been used in our research lab since March
1996. Figure 1 shows an example of a PADIS dialogue.2

The system is based on the technology of the Philips au-
tomatic train timetable information system [1]. However,
the directory-information application has some additional re-
quirements. First of all, the system must be able to handle
large databases in a flexible manner. For that, the database
is now kept as a separate entity to obtain a scalable architec-
ture in which the database can be maintained and extended

1Philips Automatic Directory Information System
2All examples have been translated from German. Personal

data (names etc.) have been changed for obvious reasons.

System: Hello, this is PADIS. How can I help you?
Caller: I’d like to talk to Mike.
System: So, you want to talk to Mike Anderson?
Caller: Yes, please.
System: The extension 506 is busy right now.

Can I do anything else for you?
Caller: Oh yes. Can you give me the email address of

Mary, please?
System: Which Mary do you want the email address

of?
Caller: Uh, she is in the speech recognition group.
System: So you want the email address of Mary White

from the speech recognition group?
Caller: Exactly.
System: The email address is . . .

Figure 1: Example dialogue.

without affecting the rest of the system. In addition, the con-
straints contained inherently in the database are exploited
to improve understanding accuracy. To optimize the flow of
the dialogue, the rigid form-filling scheme used so far was re-
placed by a more flexible dialogue control that incorporates
the database.

In this paper, we describe a system architecture that meets
these requirements and explain its components. We also re-
port on experiences made in the field test and show results
on field-test data.

2. SYSTEM ARCHITECTURE

An automatic inquiry system requires speech recognition,
language understanding, dialogue control, and speech output
capabilities. In our system, these components are organized
in a modular pipeline architecture (Fig. 2). In this way, the
modules can be maintained and exchanged independently of
each other. Unlike in the train schedule system, the database
is kept separate from the other domain-specific knowledge
sources such as grammar, language model, and dialogue de-
scription, permitting database update without retraining.



Control
Speech

Recognition Understanding
Language Dialogue Speech

Output

Telephone Network

Network Interface and I/O Control

Database

Figure 2: System architecture of PADIS.

2.1. Speech Recognition

The first module in the signal-processing pipeline is a
speaker-independent continuous telephone-speech recognizer
that processes spontaneous natural utterances in realtime.

The state-of-the-art continuous-density HMM recognizer
uses 3502 strongly tied context-dependent phonemes that
share 703 tied states. They have been trained on a large
German spontaneous-speech database that we have recorded
over the telephone network during a field test of our train
schedule information system, comprising 33081 utterances
and 12.1 hours of actual speech.

Rather than outputting the single best sentence, the recog-
nizer creates a set of plausible sentence alternatives. The
final decision is deferred to the subsequent language un-
derstanding module, permitting incorporation of additional
knowledge such as understanding grammar and database.

The sentence hypotheses are represented as a compact word
graph [2]. A word graph is a directed acyclic graph whose
nodes correspond to points in time, while its arcs represent
plausible word hypotheses. Each arc is assigned the word
hypothesis’ acoustic score. Every path through the graph is
a sentence hypothesis.

Word graph generation is implemented in a two-stage pro-
cess as described in [2]. The first stage, the word-hypotheses
generator, performs a time-synchronous beam search using
time-conditioned tree copies to identify and score plausible
word hypotheses. The second stage, the word-graph opti-
mizer combines them into a pruned word graph.

2.2. Language Understanding

The task of the language understanding is to find the most
probable path through the word graph and to compute its
meaning. Since we have to deal with spontaneous, natural
language, the input may not always be grammatically cor-
rect. Recognition errors may also account for an input that is
not completely parseable. This calls for a very robust parser
that can handle erroneous or grammatically incorrect input.

For our purpose, we do not have to understand every in-
put word, but only those phrases which contain information

relevant for the database query. These meaningful phrases
(so-called concepts) are usually well structured and are mod-
elled by a stochastic context-free grammar [1, 3, 4]. Concepts
may occur in arbitrary order in the input and may be inter-
spersed with filler words that do not contain any relevant
information. It is therefore sufficient to locate and further
process only the concepts rather than the complete input.

Concept graph

The individual concepts are modelled by an attributed
stochastic context-free grammar with a distinct start symbol
for each concept. Every rule of this grammar is assigned a
probability which indicates how likely it is to be applied given
the left-hand side non-terminal. The grammar can thus be
used as a stochastic language model.

When parsing the input, we compute its meaning at the same
time. Every non-terminal can be assigned a set of attributes.
For each syntactic rule for a non-terminal, there may be se-
mantic rules to compute its attributes from the values of the
attributes on the right-hand side.

Figure 3 shows some example rules of our grammar. The
values in parentheses are the negative log probabilities of
the corresponding rules.

<affiliation> ::= (1.62) in the <db_group> <dept>

group := <db_group>.group // attribute assignment

<affiliation> ::= (3.32) of the <db_group> <dept>

group := <db_group>.group

<dept> ::= (1.51) group

<dept> ::= (1.89) department

<db_group> ::= DATABASE group // import terminal list

group := DATABASE.group

Figure 3: Example grammar rules.

The word lists and probabilities of database-specific non-
terminals like <db_group> are not contained in the grammar
but imported from the database, permitting to exchange the
database without modifying or retraining the grammar.

Using this grammar, a concept graph is constructed from
the word graph. It has the same nodes as the underlying
word graph, and its edges are concept instances found by the
parser. Each edge is assigned a score which consists of the
acoustic score of the words contained in the concept phrase
plus a language model score assigned by the grammar.

Since in general not the whole input is covered by the gram-
mar, we add filler arcs to model uncovered word sequences.
The language-model scores for filler arcs are computed using
a word bigram model. Since the parser may also have found
concept phrases that were not actually spoken by the user,
a competing filler arc is also added for each concept arc.

The language model score for a whole sentence is computed
by combining the language model scores for all concepts and



fillers on the path with a concept-level bigram model that
models the overall sentence structure.

Integrating the database

To improve understanding accuracy, the decision on the best
path through the concept graph is not only based on acoustic
and language-model scores, but also incorporates database
constraints and dialogue history. Actually, we explicitly
model the a-priori distribution of a given information item
set. In particular, a set of information items which is not
consistent with the database (e.g. an invalid combination of
first and last name) or with the information given in previ-
ous turns is assigned a low probability value (actually, it is
set zero in our current implementation).

We use the following algorithm: First, we compute the best
path through the concept graph according to the acoustic
and language model. If this path turns out to be inconsis-
tent, the next best sentence is computed using the algorithm
described in [5] until a consistent path is found. By this ap-
proach, understanding errors could be reduced by relatively
27%, see below. A detailed description of this method and
the underlying stochastic model can be found in [6].

2.3. Dialogue Control

The overall task of the system is to gather all information
items required to uniquely identify a database query. Usu-
ally, the user does not give all needed information items in a
single utterance, and there must also be a way for correcting
possible understanding errors. Thus, we need an interactive
dialogue with the user.

The dialogue control module has to fill information slots in the
query pattern (like first and last name) with the values given
by the user and it has to come up with further questions to
obtain missing slot values. To obtain a more human-like dia-
logue, we want to avoid a rigid question-answer scheme. In-
stead, our system permits a mixed-initiative dialogue, i.e. the
user can give the information in arbitrary order. He can also
provide more or different information than he was actually
prompted for. In fact, this may be even necessary if he does
not know some of the items the system asked for.

To avoid giving a user wrong information due to misrecog-
nitions, all recognized information items must be verified.
We use the scheme of implicit verification. In every ques-
tion asked by the system, the information understood in the
previous turn is mentioned in the current question to permit
the user to detect misunderstandings (and to correct them).
Only the last question of a dialogue is a pure confirmation
(cf. example in Fig. 1).

A very effective way to meet these requirements and to keep
the dialogue description flexible with respect to other appli-
cations, is to use a declarative dialogue description as de-
scribed in [7].

In contrast to our train schedule information system, the
set of slots to be filled to refer to a unique database entry

may vary in the directory information task. E.g., some first
names may be unique, whereas others require further disam-
biguation. Therefore, the dialogue control module consults
the database with the current information to determine if
further information has to be asked for (cf. the example di-
alogue in Fig. 1, in which the first name Mike is already
unique, whereas Mary is not).

In some questions, it turned out to be necessary to include
additional information from the database in the confirmation
prompt even if it was not provided by the user. E.g. rather
than saying “So you want to speak to White ?”, we use “to
Mrs. White” instead. However, this feature must be used
with care: We observed that users get confused easily if the
system comes up with something the user has not said, es-
pecially if it is wrong due to a recognition error.

2.4. Speech Output

For the speech output, pre-recorded phrases are concate-
nated. This sounds much more natural than today’s state-
of-the-art speech synthesis systems. However, in general this
approach is unfeasible in the case of very large and/or dy-
namically changing databases, because for every new entry
in the database, the corresponding phrases must be recorded
(by the same speaker).

3. FIELD TEST EXPERIENCES

The PADIS system has been in a field test in our lab since
March 1996. Since then, about 5000 dialogues have been
collected corresponding to an amount of approximately 6
hours of user speech.

3.1. System Performance

In our current setup, 90% of the dialogues have been suc-
cessful, i.e. in 90% of all calls, the user finally got the de-
sired service. The average dialogue consists of 2.7 turns
(with 2.7 words per turn). Since the shortest possible di-
alogue already takes two turns (“I want Mike.” – “Was that
Mike?” – “Yes.”), this means less than one correction per
dialogue. Table 1 summarizes the word and attribute error
rates, which measure insertions, deletions, and substitutions
for words and attributes (information items), respectively.

Table 1: Word and attribute error rates.

Setup WER AER

without database 28.9% 40.5%
with database constraints 24.4% 29.5%

In interpreting the error rates, it should be noted that a
dialogue can be successful even if some attribute is misrec-
ognized, e.g. a deletion of a first name when the last name
is unique. The gain obtained by employing the database
constraints is much higher for attribute errors than for word
errors because misrecognitions of meaningless filler words are
much less affected.



3.2. User Experiences

Although PADIS can also provide room numbers and email
addresses, it has mainly been used for call completion (91%
of all calls). A number of users already use PADIS regularly
for their everyday business as a convenient replacement of
the written telephone lists and hand-dialling.

How callers speak to our system

For 3411 dialogues, we examined the first dialogue utterance,
in which we assumed the caller to talk most likely in his
preferred way. In 64%, the user gave the first and the last
name, while in 28% and 8%, the caller specified the last or
first name only, respectively.

One might expect humans talking to a machine to use the
simplest possible formulation, which would be the first name
(or form of address) followed by the last name for connection
requests. Interestingly however, we have found this formu-
lation in only 24% of the first dialogue utterances. Most
users preferred much more talkative formulations: The av-
erage length of the first dialogue utterances is 4.2 words. In
over 35%, please was used. 31% of the utterances contain
phrases like “I’d like to”. Finally, in 6% of the dialogues, the
user began with a greeting like hello.

Although these figures might be somewhat biased due to
callers who tested our system, it seems that if users are not
restricted by the system, they prefer to talk like they would
to a human even if it is not necessary for achieving their goal.

Inconsistent information

Before we integrated the database constraints, recognition
errors often led to invalid combinations of first and last
names and form of address. For example, users experienced
it as extremely annoying to be presented with Mrs. Mike
White, because “the system could have known.”

In some cases (e.g. when encountering heavy background
talk) the system may not be able to identify any sensible
interpretation at all in the word graph. In an early version,
we used to select the highest scoring interpretation (still vio-
lating the database constraints) and presented the user with
a corresponding clarification question. However, our expe-
riences have shown that in this case it is better to entirely
discard the utterance and reformulate the question.

System prompts and dialogue efficiency

The widest dissence on our system among the users has been
about the duration and conciseness of the system prompts.
Novice users liked the system to introduce itself and ex-
plain its features, while especially frequent users mainly
wanted a short dialogue and thus demanded very short sys-
tem prompts without lengthy explanations. (Some of them
actually requested to replace the greeting phrase by a simple
beep.) This would, however, confuse novices completely.

As a compromise, we used a short guiding question for the
greeting (such as “How can I help you ?”) and kept the

confirmation prompts as short as possible. To further opti-
mize dialogue duration for call-completion requests, the sys-
tem does not output the number of the desired party when
transferring a call. Only if the line is busy the user is told
the number instead.

Randomized prompts

Finally, a simple means of making the system more pleasant
is to randomly select system prompts from a set of alternative
formulations. Since we have applied this technique for the
greeting, users have experienced the system as “more vivid”
or “less boring”. We intend to extend this principle to the
most frequent prompts and confirmation questions.

4. CONCLUSIONS

In this paper we have presented the Philips automatic di-
rectory information and exchange board system PADIS. We
have described the system architecture and reported experi-
ences from a field test conducted in our research laboratory.

The central new idea in our prototype is the consequent
integration of database knowledge into speech understand-
ing and dialogue control. This significantly improved under-
standing accuracy and allowed for a more flexible dialogue,
leading to a dialogue success rate of about 90%.

The field test has shown that incorporating the database in
the search for the best path not only reduced the attribute
error rate by relative 27% but also increased the user accep-
tance since the system did not come up with invalid name
combinations. We believe that using a method of this type
will be essential if a much larger database is used.

5. REFERENCES

1. H. Aust, M. Oerder, F. Seide, and V. Steinbiss. The
Philips automatic train timetable information system.
Speech Communication, 17(3–4), pp. 249–262, Nov. 1995.

2. M. Oerder and H. Ney. Word graphs: An efficient inter-
face between continuous-speech recognition and language
understanding. In Proc. ICASSP, volume II, pp. 119–122,
Minneapolis, April 1993.

3. R. Pieraccini and E. Levin. Stochastic representation
of semantic structure for speech understanding. In
Proc. EUROSPEECH, pp. 383–386, Genua, 1991.

4. F. Jelinek, J. Lafferty, R. Mercer. Basic methods of prob-
abilistic context free grammars. In Proc. NATO ASI,
pp. 345–360, Cetraro, July 1990.

5. B.H. Tran, F. Seide, and V. Steinbiss. A word graph
based n-best search in continuous speech recognition. In
Proc. ICSLP, Philadelphia, Oct. 1996.

6. F. Seide, B. Rueber, and A. Kellner. Improving speech
understanding by incorporating database constraints and
dialogue history. In Proc. ICSLP, Philadelphia, Oct. 1996.

7. H. Aust and M. Oerder. Dialogue control in automatic
inquiry systems. In ESCA Workshop on Spoken Dialogue
Systems, pp. 121–124, Vigsø, June 1995.


